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Abstract. The singularity of the heat capacity for the spin-$ Ising ferromagnet arrayed 
on simple cubic and diamond lattices is investigated through the analysis of high-precision 
Monte Carl6 data for the internal energy. The analysis incorporates confluent singularities. 
Two least-squares fitting procedures are considered. In the first one, the leading 
confluent singularity amplitude is zero and the next confluent singularity is included. For 
both lattices this procedure gives accordance with: (i) the universal value for the ratio of 
the leading singularity amplitudes predicted from the E expansion and (ii) the theoretical 
expectation of equality between the non-singular parts of the heat capacity above and 
below the critical temperature. In the second least-squares fitting procedure, the leading 
confluent singularity is finite. This leads to a fit which disagrees with both (i) and (ii). 
The Monte Carlo results suggest that the failure of the series analysis to accord with (i) 
and (ii) may be due to neglect of a rather large confluent singularity in the ferromagnetic 
phase. 

1. Introduction 

The critical properties of the three-dimensional Ising ferromagnet have been studied 
in great detail by analysis of series expansions (see e.g. Domb 1974). By and large 
the results are consistent with the universar properties predicted from other theoretical 
approaches such as the E expansion (BrBzin et a1 1976). However, there seems to be 
one case where a rather substantial disagreement exists, namely the case of the heat 
capacity. 

Close to the critical temperature T, it is expected that the heat capacity has the 
form (Barmatz et a1 1975) 

(1) 

where t = (T  - Tc)/Tc. a = 0.125 and A = 0.493 (le Guillou and Zinn-Justin 1977) for 
a three-dimensional system with king symmetry. 

It is expected theoretically (Wegner 1976) that the non-singular part of C is 
symmetric, i.e. 

A+t-"(l +D+tA+FcrzA)+BC T > T ,  
T < T, '(') = {A-( - t>-"(1 +D-( - t)"+F-( - t )2A) + B -  

B+ = B-. (2) 
So far, the diamond lattice is the only three-dimensional lattice where series analysis 
has given estimates for both B' and B- .  High-temperature series leads to B +  = -1.23 
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(Hunter 1967, Domb 1974) and low-temperature series gives B- = -0.13 (Gaunt and 
Domb 1968). Obviously, these numbers are not in accordance with (2). Furthermore, 
the ratio of the leading singularity amplitudes, A'/A-, is universal and has been 
calculated by the E -expansion technique. The result for a system with Ising symmetry 
is 0.55 to first order in E (Brkzin et a1 1974) and 0.48 to second order (Bervillier 
1976). The series analysis leads to a somewhat larger value of 0.63 for the simple 
cubic lattice (Fisher and Tarko 1975) and 0.75 for the diamond lattice (Gaunt and 
Domb 1968). Consequently, it seems desirable to investigate the critical behaviour 
of the heat capacity by an alternative approach. 

In this paper we report a study of the Ising ferromagnet, where the Monte Carlo 
method is used to obtain 'experimental' data which are analysed to give the parameters 
in (1). Actually, it is advantageous to study the energy rather than the heat capacity 
because the statistical error on the energy is roughly an order of magnitude smaller 
than the error on the heat capacity. Close to T, the energy varies as 

E(t )  = 

where the parameters E:, i = 1 , .  . . , 4 ,  are simply related to the parameters in (l), 
and E, denotes the energy at T,. It might be expected that the advantage of working 
with the more accurate energy data rather than the heat capacity may be offset by 
increased difficulties in the data analysis due to the additional parameter E, in (3) 
relative to (1). This is not the case, however, as E, may be determined independently 
from finite size considerations as described in § 2. 

A less extensive Monte Carlo investigation of the heat capacity for a spin-$ Ising 
ferromagnet on a simple cubic lattice has already been reported (Landau 1976). 
Various fitting procedures of C( t )  were considered. However, accordance of A'/A- 
with the &-expansion result was obtained only by a constrained fitting procedure, 
where both B' and B- were set equal to the value derived from high-temperature 
series analysis. This constraint is not imposed in our study. 

Our calculations are performed for the Ising ferromagnet arrayed on a diamond 
lattice and on a simple cubic lattice. For both lattices the results are consistent with 
(2) and with the value for A'/A- predicted by the E expansion, provided the leading 
confluent singularity is absent, i.e. D'=D-=O. The paper is organised as follows. 
In § 2 we describe the Monte Carlo calculations and in 0 3 we present the results of 
the analysis of the Monte Carlo data. Finally, in § 4 we discuss our results. 

(3) 
T > T ,  
T<T,  

+ l - a  + ~ ; ~ + ~ f ~ l - m + A  + 1-a+2A 
+ E q t  

l -a+2A E: 1 ::: - t )  + E ;  (- t )  + E ;  (- t)l-a+A + E; ( -  t )  

2. Monte Carlo calculations 

We consider a simple cubic lattice and a diamond lattice with N 3  and 4 X N 3  lattice 
points, respectively. Both lattices are of cubical form with toroidal periodic boundary 
conditions. A spin uj = f l  is placed at each lattice point and the interaction between 
the spins is given by 

H = - J  1 u y k  J>O 
( h k )  

where the summation extends over all nearest neighbours of spins. 
The energy is calculated for a number of temperatures by a conventional Monte 

Carlo importance sampling method. To improve the statistics we have, for each 
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temperature, performed the Monte Carlo calculations at least three times starting 
from different equilibrium configurations of the spins. The energy is obtained as the 
average of the energy estimate from the different calculations and the error A E  is 
determined as the root-mean square deviation. Typically, AE/E is below 2 x 

It is well known that finite size effects are important close to T,, when the correlation 
length [ ( t )  becomes comparable to the lattice length, N. For periodic boundary 
conditions the finite-size effects on the energy are given by (see e.g. Binder 1979) 

E(t,N)-E(t ,N=oo) a exp(-N/A(t)) t # O  (4) 

E ( ~ = o , N ) - E ( ~ = o , N = c o )  CCN-( ' -"~ '~  r=o  ( 5 )  

where A (t) is proportional to r ( t )  = [Ot-". We have ensured that finite-size effects are 
unimportant for t # 0 by performing additional calculations on a larger lattice. The 
data are only accepted if the two calculations give the same value for the energy 
within the estimated error. The number of spins varies from 8000 to 108 000. The 
data are obtained with a uniform density in the interval 6 x lop3 s It I s 3 x lo-'. The 
consistency of the data is checked by observing accordance with the known high- 
temperature series for t B 0.25 (Domb 1974). 

To reduce the number of unknown parameters in (3), we have performed Monte 
Carlo calculations at T, for a number of different lattice sizes. The value of T, is 
taken from the series analysis?. The data obtained, E(t = 0, N), fit ( 5 )  for N b 16, and 
the extrapolated values of E, = E(t = 0, N = CO) are given in table 1 together with the 
values derived from series analysis. It appears from table 1 that the Monte Carlo 
estimate for E, is consistent with the series analysis estimate in the case of the simple 
cubic lattice, 
lattice. 

whereas the two estimates differ by approximately 1% for the diamond 

Table 1. Critical energies E, in units of J. 

Diamond Simple cubic 

Monte Carlo calculations -0.865 * 0.002" -0.990*0.004" 

Series analysis -0.874*00.005b -0.99218* 0.00015' 

a This work. 
Hunter (1967). 
Sykes et al (1972). 

3. Data analysis 

The parameters in (3) are derived by least-squares fitting of (3) to the energy data. 
This turns out not to be a simple task as the smallness of CY makes the simultaneous 
determination of E: and E: an almost degenerate problem. As already mentioned, 
E, has been determined independently and is thus a constant in the least-squares 
fitting. T, is (4.5108 f 0.0002)J/kB for the simple cubic lattice (Sykes et a1 1972) and 
(2.7042*0.0002)J/kB for the diamond lattice (Gaunt and Sykes 1973). The un- 
certainty of T, is of no importance in the t interval covered by our data. 

t We have refrained from estimating T, from Monte Carlo calculations since it is known with greater 
accuracy from series analysis than may conceivably be obtained from Monte Carlo calculations. 
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We have performed two three-parameter fits, one with Ed = E l  = 0 and one 
with E: =E; = 0. The motivation for the latter fit stems from the fact that series 
studies of the Ising ferromagnet on a face centred cubic lattice indicate that the leading 
singularity amplitude vanishes for spin-3 systems (Camp et u1 1976). 

The analysis is performed for a number of E, values within the estimated error 
interval. Only fits for which the parameters stay stable over a temperature interval 
are accepted. In table 2 we give the values of the resulting parameters. The errors 
are estimated from the variation of the parameters with E,. It should be noted that 
the quality of the two sets of fits is equally good. 

Table 2 shows that the relation E; = -ET, which is equivalent to (2), is supported 
by the results only when E: and E ;  have been set to zero. The ratio, -E:/E;,  
which is identical to A+/A-,  is given in table 3. It appears that accordance with the 
ratio predicted by the E expansion is obtained only for the case with E: =E; =O. 
Consequently, the analysis of the Monte Carlo data supports the relation given in 
(2) and the value for A+/A- predicted from the E expansion, provided the leading 
confluent singularity is absent and that the next confluent singularity is considered. 
It might be expected that a four-parameter fit containing the first as well as the second 
confluent singularity would be useful in showing whether E$ were in fact zero. It 
turns out however, that such a fit has too many degrees of freedom to lead to a stable 
fit. 

Table 3. Estimates of the ratio of the leading singularity amplitudes for the heat capacity, 
- E : / E ; (  = A + / A - )  in (3). I and I1 refer to the ratio obtained from the two fits in 
table 2. 

Series 
I I1 analysis E expansion 

Diamond 0.79k0.13 0.56rt0.10 0.75' 

Simple cubic 0.70i0.17 0.48i0.06 0.63b 
0.55', 0.48* 

Gaunt and Domb (1968). 
Fisher and Tarko (1975). 
First order in E (BrCzin et al 1976). 
Second order in E (Bervillier 1976). 

4. Discussion 

Our analysis attempts to determine the linear parameters in the expression for the 
heat capacity close to T,. The functional forms of the heat capacity and the energy 
are too smooth in the It1 interval (down to It1 = 6 x covered in our study to make 
any attempt at determining also the exponents a and A nothing but an exercise in 
futility. Therefore we fix the exponents at the literature values. T, is also taken from 
the literature. Since T, may be obtained with great accuracy in series analysis, the 
small error quoted is of no importance in our study. The smoothness of the energy 
curve makes it impossible with our data to prefer least-squares fits involving a leading 
confluent singularity to fits where the leading confluent singularity is replaced by the 
next confluent singularity. Only in the latter case is agreement obtained with the 
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relation in (2) and with the €-expansion prediction of A'/A-.  This observation 
applies for both the simple cubic lattice and for the diamond lattice. 

Table 2 allows a comparison of our estimate for E: and E: with the corresponding 
series analysis estimates. The agreement between the two sets is quite good for 
T > T, in the case where the leading confluent singularity is absent. For T < T, the 
agreement is less good. This suggests that the failure of the series analysis to agree 
with the E expansion upon the value of A+/A-  may be due to shortcomings of the 
low-temperature expansion. It appears that the values of E4 (and E;) are comparable 
to E ;  but of opposite sign. The series analysis did not take confluent singularities 
into accQunt and the relatively large value for E;  (and E;)  may lead to misleading 
estimates for E; unless the series is very long. 
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